Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 11(1): 81, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173747

RESUMO

In the course of military operations in modern war theaters, blast exposures are associated with the development of a variety of mental health disorders associated with a post-traumatic stress disorder-related features, including anxiety, impulsivity, insomnia, suicidality, depression, and cognitive decline. Several lines of evidence indicate that acute and chronic cerebral vascular alterations are involved in the development of these blast-induced neuropsychiatric changes. In the present study, we investigated late occurring neuropathological events associated with cerebrovascular alterations in a rat model of repetitive low-level blast-exposures (3 × 74.5 kPa). The observed events included hippocampal hypoperfusion associated with late-onset inflammation, vascular extracellular matrix degeneration, synaptic structural changes and neuronal loss. We also demonstrate that arteriovenous malformations in exposed animals are a direct consequence of blast-induced tissue tears. Overall, our results further identify the cerebral vasculature as a main target for blast-induced damage and support the urgent need to develop early therapeutic approaches for the prevention of blast-induced late-onset neurovascular degenerative processes.


Assuntos
Malformações Arteriovenosas , Traumatismos por Explosões , Ratos , Masculino , Animais , Remodelação Vascular , Traumatismos por Explosões/complicações , Traumatismos por Explosões/patologia , Encéfalo/patologia , Inflamação/patologia , Malformações Arteriovenosas/complicações , Malformações Arteriovenosas/patologia , Modelos Animais de Doenças
2.
Acta Neuropathol Commun ; 9(1): 167, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654480

RESUMO

Cerebral vascular injury as a consequence of blast-induced traumatic brain injury is primarily the result of blast wave-induced mechanical disruptions within the neurovascular unit. In rodent models of blast-induced traumatic brain injury, chronic vascular degenerative processes are associated with the development of an age-dependent post-traumatic stress disorder-like phenotype. To investigate the evolution of blast-induced chronic vascular degenerative changes, Long-Evans rats were blast-exposed (3 × 74.5 kPa) and their brains analyzed at different times post-exposure by X-ray microcomputed tomography, immunohistochemistry and electron microscopy. On microcomputed tomography scans, regional cerebral vascular attenuation or occlusion was observed as early as 48 h post-blast, and cerebral vascular disorganization was visible at 6 weeks and more accentuated at 13 months post-blast. Progression of the late-onset pathology was characterized by detachment of the endothelial and smooth muscle cellular elements from the neuropil due to degeneration and loss of arteriolar perivascular astrocytes. Development of this pathology was associated with vascular remodeling and neuroinflammation as increased levels of matrix metalloproteinases (MMP-2 and MMP-9), collagen type IV loss, and microglial activation were observed in the affected vasculature. Blast-induced chronic alterations within the neurovascular unit should affect cerebral blood circulation, glymphatic flow and intramural periarterial drainage, all of which may contribute to development of the blast-induced behavioral phenotype. Our results also identify astrocytic degeneration as a potential target for the development of therapies to treat blast-induced brain injury.


Assuntos
Astrócitos/patologia , Traumatismos por Explosões/patologia , Barreira Hematoencefálica/patologia , Lesões Encefálicas Traumáticas/patologia , Doenças Neuroinflamatórias/patologia , Animais , Traumatismos por Explosões/complicações , Lesões Encefálicas Traumáticas/etiologia , Células Endoteliais/patologia , Doenças Neuroinflamatórias/etiologia , Pericitos/patologia , Ratos , Ratos Long-Evans , Remodelação Vascular/fisiologia
3.
J Forensic Sci ; 61(1): 35-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26258680

RESUMO

Concerns over the toxic by-products produced by traditional ammunition have led to an increase in popularity of nontoxic ammunition. In this work, the chemical composition of six brands of nontoxic ammunition was investigated and compared to that of a road flare, which served as an environmental source with similar composition. Five rounds of each brand were fired while a further five were disassembled and the primer alone was fired. Particles collected from all samples, including the road flare, were analyzed by scanning electron microscopy with energy dispersive X-ray analysis. Common elements among the different ammunition brands included aluminum, potassium, silicon, calcium, and strontium. Spectra were then subjected to principal components analysis in which association of the primer to the intact ammunition sample was generally possible, with distinction among brands and from the road flare sample. Further, PCA loadings plots indicated the elements responsible for the association and discrimination observed.

4.
ACS Appl Mater Interfaces ; 4(3): 1440-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22276733

RESUMO

Catalytic wet air oxidation (CWAO) using membrane contactors is attractive for remediation of aqueous pollutants, but previous studies of even simple reactions such as formic acid oxidation required multiple passes through tubular ceramic membrane contactors to achieve high conversion. This work aims to increase single-pass CWAO conversions by using polysulfone (PS) hollow fibers as contactors to reduce diffusion distances in the fiber lumen. Alternating adsorption of polycations and citrate-stabilized platinum colloids in fiber walls provides catalytically active PS hollow fibers. Using a single PS fiber, 50% oxidation of a 50 mM formic acid feed solution results from a single pass through the fiber lumen (15 cm length) with a solution residence time of 40 s. Increasing the number of PS fibers to five while maintaining the same volumetric flow rate leads to over 90% oxidation, suggesting that further scale up in the number of fibers will facilitate high single pass conversions at increased flow rates. The high conversion compared to prior studies with ceramic fibers stems from shorter diffusion distances in the fiber lumen. However, the activity of the Pt catalyst is 20-fold lower than in previous ceramic fibers. Focusing the Pt deposition near the fiber lumen and limiting pore wetting to this region might increase the activity of the catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...